TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION

George Siogkas
Evangelos Skodras
Evangelos Dermatas

Electrical & Computer Engineering Dept.
University of Patras, Greece
GOAL

Develop a system for automated vision based detection of traffic lights, robust even under adverse conditions.
Why is this system important?

To warn drivers for red-light running dangers.

For autonomous vehicles driving in existing road infrastructure.
Why hasn’t it been solved yet?

Traffic sign recognition has taken all the glory.

Google Scholar Search (February 21st, 2012):
• “Traffic sign recognition” approx. 1660 results.
• “Traffic light recognition” approx. 75 results
Why hasn’t it been solved yet?

Big cities pose an extremely hard problem because of multiple light sources.

Night driving is also a challenging scenario.

Bad weather makes detection even more difficult.

Combining all of the above, even in small scale, makes detection almost impossible.
What has been tried?

• Color thresholding in RGB or HSV
• Symmetry Detection with Hough or other novel methods.
• Structural Models of Traffic Lights.
• Tracking modules to help minimize false positive results.
• A mixture of the above.
Proposed System Overview

Frame Acquisition

RGB to CIE-\(L^*a^*b^*\) Conversion

Red-Green Color Difference Enhancement

Hole Filling Process

Image Pre-Processing

TL Candidate Detection

Local Maxima/Minima Localization

Radial Symmetry Detection

TL Candidate Verification

Spatiotemporal Persistency Check

TL Present?

Reject Candidate

NO

YES

Inform Driver

TL Present?
Image Pre-Processing

Step 1: RGB to L* a* b*

L*:

a*:

b*:
Image Pre-Processing

Step 2: Red – Green Enhancement

L*:

Multiplying L* and a* to enhance only bright red and green regions (exclude trees, roofs, etc.)
Image Pre-Processing

Step 3: Yellow – Blue Enhancement

L*:

b*:

Multiplying L* and b* to enhance only bright yellow and blue regions (red lights include yellow and green lights include some blue)
Image Pre-Processing

Step 4: Blooming Effect Reduction

R-G:

Y-B:

Image filling of the two images followed by addition. This reduces the “blooming effect” significantly.
Step 4: Blooming Effect Reduction

R-G:

Y-B:

Image filling of the two images followed by addition. This reduces the “blooming effect” significantly.
Image Pre-Processing

Step 1: RGB to L*a*b*

L*:

a*:

b*:
Image Pre-Processing

Step 2: Red – Green Enhancement

Multiplying L^* and a^* to enhance only bright red and green regions (exclude trees, roofs, etc.)
Image Pre-Processing

Step 3: Yellow – Blue Enhancement

L^*:

b^*:

Multiplying L^* and b^* to enhance only bright yellow and blue regions (red lights include yellow and green lights include some blue)
Step 4: Blooming Effect Reduction

R-G:

Y-B:

Image filling of the two images followed by addition. This reduces the “blooming effect” significantly.
Image Pre-Processing

Step 4: Blooming Effect Reduction

R-G:

Y-B:

Image filling of the two images followed by addition. This reduces the “blooming effect” significantly.
Traffic Light Candidate Detection
Traffic Light Candidate Detection

Step 1: Fast Radial Transform
Traffic Light Candidate Detection

Step 1: Fast Radial Transform
Traffic Light Candidate Detection

Step 2: Maxima/Minima Localization
Traffic Light Candidate Detection
Traffic Light Candidate Detection

Step 1: Fast Radial Transform
Traffic Light Candidate Detection

Step 1: Fast Radial Transform
Traffic Light Candidate Detection

Step 2: Maxima/Minima Localization
Traffic Light Candidate Verification

FRAME #1:

Spatiotemporal persistency check: Traffic Lights candidates for 4 consecutive frames get verified.
Traffic Light Candidate Verification

FRAME #2:

Spatiotemporal persistency check: Traffic Lights candidates for 4 consecutive frames get verified.
Traffic Light Candidate Verification

FRAME #3:

Spatiotemporal persistency check: Traffic Lights candidates for 4 consecutive frames get verified.
Traffic Light Candidate Verification

FRAME #4:

Spatiotemporal persistency check: Traffic Lights candidates for 4 consecutive frames get verified.
Traffic Light Candidate Verification

FRAME #5:

Spatiotemporal persistency check: Traffic Lights candidates for 4 consecutive frames get verified.
Traffic Light Candidate Verification

FRAME #6:

Spatiotemporal persistency check: Traffic Lights candidates for 4 consecutive frames get verified.
Experimental Evaluation

Quantitative
- Normal weather conditions.
- City Driving.
- Daytime.
- Manually Annotated.
- 8-bit, 640x480 @ 25fps
- 11179 frames

Qualitative
- Rainy Weather
- Night Driving
- Different cameras.
- Different resolutions.
- Downloaded off YouTube, OR shot in Greek roads.

The quantitative data is coming from the Robotics Centre of Mines ParisTech and is publicly available at: http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
Results in Normal Conditions
Results in Normal Conditions
Results in Rainy Conditions
Results in Night Driving Scenes
Method Limitations

False Positives

Night in Big Cities
Conclusions

• Proposed method shows good results in both normal and adverse conditions.
• Many false alarms, that could be reduced by some kind of structural model.
• Extremely difficult cases cannot be tackled.
• Future work on construction of an annotated database in adverse conditions.
• Also, the incorporation of a tracking module and a color consistency module.
Bibliography
Thank you for your attention.

Questions?